11/2/21

UMassAmbherst

The Commonwealth's Flagship Campus

Lecture 15
State Machines

Overview

* Regular Expressions

e State Machines

ECE 241 — Adv. Programming | 2021

© 2021 Mike Zink

11/2/21

Objective

* Understand how pattern matching can be
performed with regular expressions

* Learn how state machines can be used to
implement regular expressions

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink

2

Regular Expressions

* Method to describe patterns of text
* Character-by-character processing

* Special operators

| (alternatives)

. (arbitrary character)

* (zero or more repetitions)
+ (one or more repetitions)
() (precedence)

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink 3

3

11/2/21

Regular Expressions

* Examples

* abcd
» abcd matches; aabcd does not match
* a*bcd
» aabcd matches; bcd matches; cd does not match
* (ab|bb)cd
abcd matches; bbcd matches; abbbcd does not match
* (ab|bb)*cd
abbbcd matches; bbabcd matches; cd matches; ababcd
matches; abbb does not match

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink 4

4

Use of Regular Expressions

 Compiler
 Interpreting characters in program
» Regular expressions for numbers, keywords, etc.
« Example tool: flex
* Networking
» Checking network traffic for attacks
* Regular expressions for attack patterns
« Example tool: snort database

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink 5

5

11/2/21

More Examples for Regular Expressions

Examining command lines
Parsing user input

Parsing various text files
Examining web server logs
Examining test results
Finding text in emails
Reading configuration files

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink

6

More Examples for Regular Expressions

. Ma-zA-Z"-\s]{1,40}$

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink

7

11/2/21

Limits of Regular Expressions

* Regular expression match patterns from “regular
language”

* Regular expression cannot describe patterns
from more complex language

* What can you not describe with a regular expression?

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink 8

8

» Regular expression match patterns from “regular
language”

Limits of Regular Expressions

* Regular expression cannot describe patterns

from more complex language
« Context-free grammars
* Equal number of opening and closing parentheses

« Context-sensitive grammars
* Grammatically correct English language

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink 9

9

State Machine

» Regular expression can be matched with a state
machine (or finite automaton)

 State machine is special case of directed graph
* Nodes represent state
* Edges represent transitions (based on input)

 State machines can be constructed for any kind of
regular expression

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink

11/2/21

10

State Machine Examples

« Example 1: ac+|bd

« Example 2: a(b*|c)d

a
1 >

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink

C

11

11

11/2/21

Deterministic vs Non-Deterministic

* What is the problem with (ab)*ac?

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink

12

Deterministic vs Non-Deterministic

* What is the problem with (ab)*ac?
* Non-deterministic transition on a
* Non-deterministic state machines

* A bit more complex to implement
* We do not consider them here
* There exist algorithms to convert from NFA to DFA

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink

13

11/2/21

Deterministic vs Non-Deterministic

e list/lost/lust

Start

© 2021 Mike Zink

ECE 241 — Adv. Programming | 2021

Match

14

Deterministic vs Non-Deterministic

* list/lost/lust

Start@ _,

ECE 241 — Adv. Programming | 2021

© 2021 Mike Zink

Match

15

11/2/21

Deterministic vs Non-Deterministic

e list/lost/lust

Start O

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink

16

Deterministic vs Non-Deterministic

* list/lost/lust

Start@ m{'lolu}o /\ t QMatch

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink

17

11/2/21

Implementing a State Machine

 Vertex with multiple outgoing edges
* Need class to represent edge
* Need linked list to store edges

» Matching operation
- Start at start node
» Follow edge that matches character
« At end, check if accepting state
* |If no edge or no accepting state, then no match

18

Edge Class

Edge:
(c, dest):
.destination = dest

.character = ¢

19

10

11/2/21

Vertex Class

Vertex:
(n:
.number = n
.edgelList =]
.isAcceptingState =

setAcceptingState():
.1sAcceptingState =

addEdge (e):
.edgelList.append(e)

followEdge(c):
i .edgelList:
i.character == c:
i.destination

20

21

Matching Method

(s):

.start = s

match(s):
.characters = (s)
.current = .start

(+S+

i .characters:
.current ==

()

(.current.number)
.current = .current.followEdge(1i)

.current ==

()

(.current.number);
.current.isAcceptingState:

11

11/2/21

)
1
@
¥
-

ng DFA and Patter Matching

Vertex(6)
.setAcceptingState()
.setAcceptingState()

.addEdge (Edge
.addEdge (Edge
.addEdge (Edge

(v2
(
(
.addEdge (Edge
(
(
(
(

vl
v3
v5
\Z
v6
v6
vl

.addEdge (Edge
.addEdge (Edge
.addEdge (Edge

))
))
))
))
))
))
))
.addEdge (Edge))

(
(
(
(
(
(
(
(

stateMachine = DFA(v1)
stateMachine.match
stateMachine.match
stateMachine.match
stateMachine.match
stateMachine.match
stateMachine.match
stateMachine.match

(
(
(
(
(
(
(
(

22
Matching Example
» Graph: b c
« Matching: NN >@
 abc ~
 bbabc
 baab
 baabcc 3 0
 abcdbbbabc
 abcd
e e
23

12

11/2/21

Next Steps

* Next lecture and on Thursday
* Project 2 due on 11/11

ECE 241 — Adv. Programming | 2021 © 2021 Mike Zink 24

24

UMassAmbherst

The Commonwealth’s Flagship Campus

13

