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Overview

* Regular Expressions

e State Machines
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Objective

* Understand how pattern matching can be
performed with regular expressions

* Learn how state machines can be used to
implement regular expressions
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Regular Expressions

* Method to describe patterns of text
* Character-by-character processing

* Special operators

| (alternatives)

. (arbitrary character)

* (zero or more repetitions)
+ (one or more repetitions)
() (precedence)
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Regular Expressions

* Examples

* abcd
» abcd matches; aabcd does not match
* a*bcd
» aabcd matches; bcd matches; cd does not match
* (ab|bb)cd
abcd matches; bbcd matches; abbbcd does not match
* (ab|bb)*cd
abbbcd matches; bbabcd matches; cd matches; ababcd
matches; abbb does not match
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Use of Regular Expressions

 Compiler
 Interpreting characters in program
» Regular expressions for numbers, keywords, etc.
« Example tool: flex
* Networking
» Checking network traffic for attacks
* Regular expressions for attack patterns
« Example tool: snort database
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More Examples for Regular Expressions

Examining command lines
Parsing user input

Parsing various text files
Examining web server logs
Examining test results
Finding text in emails
Reading configuration files
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More Examples for Regular Expressions

. Ma-zA-Z"-\s]{1,40}$
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Limits of Regular Expressions

* Regular expression match patterns from “regular
language”

* Regular expression cannot describe patterns
from more complex language

* What can you not describe with a regular expression?
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» Regular expression match patterns from “regular
language”

Limits of Regular Expressions

* Regular expression cannot describe patterns

from more complex language
« Context-free grammars
* Equal number of opening and closing parentheses

« Context-sensitive grammars
* Grammatically correct English language
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State Machine

» Regular expression can be matched with a state
machine (or finite automaton)

 State machine is special case of directed graph
* Nodes represent state
* Edges represent transitions (based on input)

 State machines can be constructed for any kind of
regular expression
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State Machine Examples

« Example 1: ac+|bd

« Example 2: a(b*|c)d

a
1 >
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Deterministic vs Non-Deterministic

* What is the problem with (ab)*ac?
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Deterministic vs Non-Deterministic

* What is the problem with (ab)*ac?
* Non-deterministic transition on a
* Non-deterministic state machines

* A bit more complex to implement
* We do not consider them here
* There exist algorithms to convert from NFA to DFA
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Deterministic vs Non-Deterministic

e list/lost/lust

Start
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Deterministic vs Non-Deterministic

* list/lost/lust

Start@ _,
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Deterministic vs Non-Deterministic

e list/lost/lust

Start O
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Deterministic vs Non-Deterministic

* list/lost/lust

Start@ m{'lolu}o /\ t QMatch
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Implementing a State Machine

 Vertex with multiple outgoing edges
* Need class to represent edge
* Need linked list to store edges

» Matching operation
- Start at start node
» Follow edge that matches character
« At end, check if accepting state
* |If no edge or no accepting state, then no match

18

Edge Class

Edge:
( c, dest):
.destination = dest

.character = ¢
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Vertex Class

Vertex:
( n:
.number = n
.edgelList =]
.isAcceptingState =

setAcceptingState( ):
.1sAcceptingState =

addEdge ( e):
.edgelList.append(e)

followEdge( c):
i .edgelList:
i.character == c:
i.destination
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Matching Method

( s):

.start = s

match( s):
.characters = (s)
.current = .start

( +S+

i .characters:
.current ==

( )

( .current.number )
.current = .current.followEdge(1i)

.current ==

( )

( .current.number);
.current.isAcceptingState:
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Matching Example
» Graph: b c
« Matching: NN >@
 abc ~
 bbabc
 baab
 baabcc 3 0
 abcdbbbabc
 abcd
e e
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Next Steps

* Next lecture and on Thursday
* Project 2 due on 11/11
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